Universality in complex networks: random matrix analysis.

نویسندگان

  • Jayendra N Bandyopadhyay
  • Sarika Jalan
چکیده

We apply random matrix theory to complex networks. We show that nearest neighbor spacing distribution of the eigenvalues of the adjacency matrices of various model networks, namely scale-free, small-world, and random networks follow universal Gaussian orthogonal ensemble statistics of random matrix theory. Second, we show an analogy between the onset of small-world behavior, quantified by the structural properties of networks, and the transition from Poisson to Gaussian orthogonal ensemble statistics, quantified by Brody parameter characterizing a spectral property. We also present our analysis for a protein-protein interaction network in budding yeast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Information Propagation Analysis of Social Network Using the Universality of Random Matrix

Spectral graph theory gives an algebraical approach to analyze the dynamics of a network by using the matrix that represents the network structure. However, it is not easy for social networks to apply the spectral graph theory because the matrix elements cannot be given exactly to represent the structure of a social network. The matrix element should be set on the basis of the relationship betw...

متن کامل

Quantifying randomness in protein-protein interaction networks of different species: A random matrix approach

We analyze protein-protein interaction networks for six different species under the framework of random matrix theory. Nearest neighbor spacing distribution of the eigenvalues of adjacency matrices of the largest connected part of these networks emulate universal Gaussian orthogonal statistics of random matrix theory. We demonstrate that spectral rigidity, which quantifies long range correlatio...

متن کامل

O ct 1 99 8 Logarithmic Universality in Random Matrix The - ory

Universality in unitary invariant random matrix ensembles with complex matrix elements is considered. We treat two general ensembles which have a determinant factor in the weight. These ensembles are relevant, e.g., for spectra of the Dirac operator in QCD. In addition to the well established universality with respect to the choice of potential, we prove that microscopic spectral correlators ar...

متن کامل

Random matrix analysis for gene interaction networks in cancer cells

Motivation: The investigation of topological modifications of the gene interaction networks in cancer cells is essential for understanding the desease. We study gene interaction networks in various human cancer cells with the random matrix theory. This study is based on the Cancer Network Galaxy (TCNG) database which is the repository of huge gene interactions inferred by Bayesian network algor...

متن کامل

Beyond universality in random matrix theory

In order to have a better understanding of finite random matrices with non-Gaussian entries, we study the 1/N expansion of local eigenvalue statistics in both the bulk and at the hard edge of the spectrum of random matrices. This gives valuable information about the smallest singular value not seen in universality laws. In particular, we show the dependence on the fourth moment (or the kurtosis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 76 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2007